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Abstract Extracting the temporal structure of sequences of events is crucial for perception,

decision-making, and language processing. Here, we investigate the mechanisms by which the

brain acquires knowledge of sequences and the possibility that successive brain responses reflect

the progressive extraction of sequence statistics at different timescales. We measured brain

activity using magnetoencephalography in humans exposed to auditory sequences with various

statistical regularities, and we modeled this activity as theoretical surprise levels using several

learning models. Successive brain waves related to different types of statistical inferences. Early

post-stimulus brain waves denoted a sensitivity to a simple statistic, the frequency of items

estimated over a long timescale (habituation). Mid-latency and late brain waves conformed

qualitatively and quantitatively to the computational properties of a more complex inference: the

learning of recent transition probabilities. Our findings thus support the existence of multiple

computational systems for sequence processing involving statistical inferences at multiple scales.

DOI: https://doi.org/10.7554/eLife.41541.001

Introduction
From seasons’ cycle to speech, events in the environment are rarely independent from one another;

instead they are often structured in time. For instance, dark clouds often precede rain. Detecting

those hidden temporal structures is useful for many cognitive functions (Lashley, 1951). For

instance, by building correct expectations of the future, one can then process sensory information

more quickly and/or more efficiently (Summerfield and de Lange, 2014; Melloni et al., 2011;

Ekman et al., 2017) or adapt behavior by selecting the best course of actions (Skinner, 1953). In

humans, the extraction of structures over time is also crucial in language acquisition (Saffran et al.,

1996; Endress and Mehler, 2009).

Sequences of observations can be described at different levels of abstraction (Dehaene et al.,

2015). The most basic level of coding used to represent sequential inputs is the encoding of statisti-

cal regularities, such as item frequency and transition probabilities. Many experiments demonstrate

that the brain possesses powerful statistical learning mechanisms that extract such regularities from

sequential inputs (Armstrong et al., 2017; Santolin and Saffran, 2018). Importantly, the learnt sta-

tistics can serve as building blocks for more elaborate codes. For instance, in infants, learning the

transition probabilities between syllables seems to be a building block on top of which words and

syntactic tree structures are built (Saffran et al., 1996; Chomsky and Ronat, 1998). However, the

exact manner through which the brain extracts such statistics remains unknown. Here, we ask two

basic questions: What statistics are estimated by the brain? Over which timescale are such computa-

tions performed, that is which observations, from recent to remote ones, are incorporated in the

learning process? As we shall see, there is no single answer to those questions because different

brain processes estimate different statistics computed over different timescales. However, we show

how learning models, fitted to brain responses, can help tease apart those processes.
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Several statistics can indeed be used to describe a given sequence. To illustrate this point, con-

sider the following sequence: AAAAABBBBBBAA. A first level of description is the frequency of

each item (A and B). In this example: p(A) = 1 – p(B) = 7/13. The brain is sensitive to the frequency

of items in both visual (Grill-Spector et al., 2006) and auditory sequences (Näätänen et al., 2007;

Garrido et al., 2009). But note that item frequency (IF) ignores the order in which observations are

received. By contrast, alternation frequency (AF) inspects whether successive observations are identi-

cal or different, a statistic to which the brain is also sensitive in visual (Summerfield et al., 2008;

Teinonen et al., 2009; Bulf et al., 2011; Summerfield et al., 2011) and auditory sequences

(Todorovic et al., 2011; Todorovic and de Lange, 2012). In our example, p(alternation) = 1 – p(rep-

etition) = 2/12. Note that alternation frequency ignores the nature of repetitions and alternations, as

it treats similarly the repetitions A fi A and B fi B and similarly the alternations A fi B and B fi A.

Such dependencies can only be captured by transition probabilities (TP), which specify what stimulus

is likely to be observed (an A or a B) given the context. In our example, p(A|B) = 1 – p(B|B) = 1/6 and

p(B|A) = 1 – p(A|A) = 1/6. Importantly, TP entail information regarding the frequency of items (IF),

their co-occurence (AF), and their serial order (e.g. p(A|B) 6¼ p(B|A)). This makes TP the simplest sta-

tistical information that genuinely reflects a sequential regularity. There is evidence that TP are moni-

tored by human adults (Domenech and Dreher, 2010; Meyniel et al., 2015; Mittag et al., 2016;

Meyniel and Dehaene, 2017; Higashi et al., 2017) and infants (Marcovitch and Lewkowicz, 2009;

Lipkind et al., 2013), macaque monkeys (Meyer and Olson, 2011; Ramachandran et al., 2016),

rodents (Yaron et al., 2012) and even songbirds (Takahasi et al., 2010; Markowitz et al., 2013;

Lipkind et al., 2013; Chen and Ten Cate, 2015). Those three different statistics (IF, AF, TP) are,

however, often studied separately. This may cause confusion, because some (IF and AF) are embed-

ded in others (TP). In addition, the correct identification of those statistics depends on the timescale

over which they are computed, which may vary between studies. For instance, if the following ele-

ments are presented sequentially: AAAAABBBBBBAA. . ., the underlined B will appear surprising

with respect to both IF (a B after many As) and AF (an alternation after many repetitions), whereas

the underlined A will not appear surprising to AF (it follows the tendency to repeat), and compara-

tively more surprising to IF since at the scale of a few observations this A is quite rare relative to the

many preceding Bs.

Our second question is therefore about timescales: which history of observations is used to

inform the estimated statistics? Previous studies showed that the brain is particularly sensitive to the

recent history of observations both in visual (Huettel et al., 2002) and auditory sequences

(Squires et al., 1976; Kolossa et al., 2012). Moreover, brain responses elicited by each observation

indicate the existence of different statistical expectations arising in parallel from distinct observa-

tions’ histories (Ulanovsky et al., 2004; Kiebel et al., 2008; Bernacchia et al., 2011; Ossmy et al.,

2013; Meder et al., 2017; Scott et al., 2017; Runyan et al., 2017). There exists a continuum of

timescales, but for clarity and following previous works (Squires et al., 1976; Kolossa et al., 2012;

Meyniel et al., 2016), we will refer to statistics being estimated using the most recent observations

only, as local statistics, and we term global statistics the ones whose estimation takes into account

all observations.

Taken altogether, the prior results quoted so far suggest that the brain is sensitive to different

statistics (IF, AF, TP) and different timescales of integration (from local to global). Yet those conclu-

sions remain unclear because those effects were investigated using different techniques (e.g. reac-

tion times, EEG, fMRI), in different modalities (using sounds, faces, geometrical shapes, . . .) and with

only a subset of all possible conditions (e.g. by manipulating IF but not AF). We recently proposed

that those seemingly disparate findings might in fact all result from an estimation of TP on a local

timescale (Meyniel et al., 2016). In this view, (i) sensitivity to global, block-level, statistics results

from an average of local expectations, and (ii) sensitivity to simpler statistics (IF and AF) is explained

by the fact that they are embedded in the space of TP. Here, we will explore whether different brain

signatures reflect computations of different statistics and different timescales, and the extent to

which they correspond to our proposed local TP model.
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Results

Experimental design
In order to address those questions, we designed a new MEG experiment in which binary auditory

sequences comprising two sounds, denoted A and B, were presented to human subjects (see

Figure 1A). Different statistics were used to generate these stochastic sequences (see Figure 1B). In

the frequency-biased condition, one item (B) was overall more frequent than the other. In the alter-

nation-biased condition, alternation (i.e. pairs AB and BA) was overall more frequent than repetition

(i.e. AA and BB). In the repetition-biased condition, the reverse was true. Finally, in the fully stochas-

tic condition, all the events were equally likely to happen (i.e. as many As than Bs and as many AA,

than AB, BA, BB).

A quantitative account of learning
It is important to distinguish the statistics that are used to generate the sequences and the statistics

that are inferred by the brain. In order to characterize the inference process, we designed three fam-

ilies of learning models, each corresponding to the inference of a different statistics: IF, AF and TP.

Each of the sequences presented to subjects corresponds to a different bias in generative TP, and it

can be described from the view point of each model (IF, AF, TP). Figure 1D shows an example for

each of the 12 possibilities (three models times four sequences generated with a different bias).

Within each family of model (one per statistics that is estimated), we further distinguished

between models on the basis of their timescale of integration. An extreme case is global integration:

Figure 1. Experimental design: transition probabilities induce orthogonal variations of item frequency and

alternation frequency. (A) Human subjects were presented with binary sequences of auditory stimuli. Each

sequence was composed of a unique set of syllables (e.g. A = /ka/ and B = /pi/) presented at a relatively slow

rhythm (every 1.4 s) and occasionally interrupted by questions asking subjects to predict the next stimulus. (B)

Stimuli were drawn from fixed generative transition probabilities p(A|B) and p(B|A) that varied across four blocks.

Those transition probabilities, in turn, determined item frequency p(A) and alternation frequency p(alt.). (C)

Example sequences derived from generative transition probabilities used in each condition. The resulting

sequences were either fully stochastic, biased toward one of the stimuli (here Bs), or biased toward repetitions or

alternations. (D) Learning models were applied to these sequences: a model learning transition probabilities (TP),

one learning the frequency of items (IF) and one learning the frequency of alternations (AF). Note that only the TP

model can discriminate all four conditions; the IF model is blind to biases toward repetitions or alternations, while

the AF model is blind to biases in the balance between stimuli.

DOI: https://doi.org/10.7554/eLife.41541.002

The following figure supplements are available for figure 1:

Figure supplement 1. Diagnostic value of the experimental design.

DOI: https://doi.org/10.7554/eLife.41541.003

Figure supplement 2. Brain responses evoked by the auditory stimuli.

DOI: https://doi.org/10.7554/eLife.41541.004
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all observations are used equally in the inference process (see Figure 1D). A more realistic possibility

is local integration by means of leaky accumulation (Gerstner and Kistler, 2002): previous observa-

tions are progressively discounted, giving a larger weight to the most recent observations in the

inference process.

All models estimate the current statistics based on a (local or global) count of observations by

means of standard Bayesian inference (see Materials and methods). Using Bayesian inference (again),

the estimated statistics are turned into a prediction about the next stimulus. In that framework, sur-

prise results from the discrepancy between the prediction and the actual observation that is

received. More formally, surprise is quantified as the negative logarithm of the (estimated) probabil-

ity of the actual observation (Shannon, 1948): observations that are deemed less probable produce

larger surprise.

Many stimulus-evoked MEG responses are typically thought of as surprise signals, or equivalently,

prediction error signals. According to the predictive coding hypothesis (Rao and Ballard, 1999; Fris-

ton, 2005; Spratling, 2017), prediction error is an important quantity used to revise our beliefs

(Friston and Kiebel, 2009) or simply to perceive the world (Rao and Ballard, 1999; Lee and Mum-

ford, 2003). Such surprise signals dominate evoked responses measured with MEG and EEG, in par-

ticular in the auditory domain (Heilbron and Chait, 2018), and are thus fairly easy to quantify. We

therefore adopted a reverse-engineering approach, comparing MEG signals to theoretical surprise

levels computed from different learning models. Based on this comparison, we aimed to determine

the most likely inference performed by the brain among those that we have hypothesized. We com-

pared different learning models that differ both in the statistics (IF, AF and TP) and the timescale of

integration (parameterized by !, we tested 55 values in total). We adopted a design that allows the

identification of both the statistics that are inferred by the brain, and the timescale of integration

(see Figure 1—figure supplement 1).

Description of auditory-evoked responses
We first verified that our paradigm elicited typical auditory responses. The grand-averaged MEG

responses evoked by the sounds revealed four distinct canonical components (see Figure 1—figure

supplement 2): three early responses (M50, M150 and M250 components) characterized by topog-

raphies plausibly arising from bilateral auditory cortex (Chait et al., 2007; Strauss et al., 2015) and

a late response associated with the classical P300/slow-wave topography (Wacongne et al., 2011).

In order to investigate whether those brain responses were modulated by the statistical regulari-

ties of the auditory sequences, we explored two timescales at which those regularities may emerge

in our experiment: global and local. Our general approach proceeds as follows: (1) searching effects

of global statistical regularities, (2) investigating the interplay between local and global statistical

regularities in order to follow up and expand previous historical studies (in particular: Squires et al.,

1976) that focused on late evoked responses and (3) performing a systematic analysis, independent

of any prior assumption regarding the timing (what post-stimulus latency), spatial location (which

sensors) and properties (which effect, local or global, and of which statistics) of the effects.

Sensitivity to global, block-level, statistics
We first examined how these auditory-evoked responses were modulated by global, block-level sta-

tistics within each of the four conditions. By design, three out of these four experimental conditions

induce a bias in the global statistics, such that some events are overall more likely to occur than

others. To investigate the brain sensitivity to such global biases, we contrasted MEG responses

evoked by rare events with frequent ones. We report results corrected for multiple comparison

across time points and sensors (the spatio-temporal clusters that survive correction at p < 0.05 at

the test level and p < 0.05 at the cluster level, see Materials and methods and Figure 2—Source

data 1).

In the frequency-biased condition, rare A items were overall less frequent than frequent B items

and, as expected, rare items elicited larger responses than frequent ones (significant between 227

and 910 ms post-sound onset, see Figure 2A and Figure 2—figure supplement 1A). In the repeti-

tion-biased condition, repetitions, that is XX = AA or BB, were overall more frequent than alterna-

tions, that is XY = AB or BA; brain signals also reflected this bias, showing increased activity for rare

alternations as compared to frequent repetitions (significant between 391 and 633 ms post-sound
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onset, see Figure 2B and Figure 2—figure supplement 1B). In the alternation-biased condition, in

which alternations are overall more frequent than repetitions, we found a reversal of the effect com-

pared to the repetition-biased condition. Brain signals were larger for rare repetitions than frequent

alternations (significant between 176 and 371 ms post-sound onset, see Figure 2B and Figure 2—

figure supplement 1B). Finally, in the fully stochastic condition, there was no global bias regarding

item or alternation frequencies: there were as many As as Bs and as many repetitions as alternations.

Accordingly, no significant difference was found, neither for the A – B contrast (see first row in

Figure 2A) nor for the repetition – alternation one (see first row in Figure 2B). Between-conditions

comparisons show that differences between items or between alternation and repetition are indeed

stronger when there exists a global statistical bias than in the fully stochastic condition (see Fig-

ure 2—figure supplement 2).

Figure 2. Brain responses are modulated by global statistics. (A) Difference in brain activity evoked by the two

different items in the fully stochastic (in which both stimuli are equiprobable) and frequency-biased (in which one

of the two stimuli is more frequent than the other) conditions. (B) Difference in brain activity evoked by alternations

and repetitions in the fully stochastic (in which repetitions and alternations are equiprobable), repetition-biased (in

which repetitions are more frequent than alternations) and alternation-biased (in which alternations are more

frequent than repetitions) conditions. X/Y denotes a pooling of both stimuli together, XX (or YY) thus denotes

repetitions of A or B (i.e. AA and BB pooled) while XY (or YX) denotes alternations between A and B (i.e. AB and

BA pooled). We report the difference in the MEG responses elicited by a given item (X = A or B) when it is

preceded by the same (XX = AA or BB) versus a different (YX = BA or AB) item. Sensors marked with a black dot

showed a significant difference (p < 0.05 at the test level and p < 0.05 at the cluster level).

DOI: https://doi.org/10.7554/eLife.41541.005

The following source data and figure supplements are available for figure 2:

Source data 1. Violation of global statistics.

DOI: https://doi.org/10.7554/eLife.41541.008

Figure supplement 1. Time courses of the differences between frequent and rare events in the biased conditions.

DOI: https://doi.org/10.7554/eLife.41541.006

Figure supplement 2. Contrasts between surprise responses across conditions.

DOI: https://doi.org/10.7554/eLife.41541.007
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Sensitivity to local, history-dependent, statistics
Beyond and above those block effects, due to their stochastic nature, the sequences also contain

biases in the local statistics (e.g. a sudden surge of A sounds). Previous findings have shown that

some brain signals, notably late ones, reflect a sensitivity to such local regularities on top, or even in

the absence of global regularities (Squires et al., 1976; Kolossa et al., 2012). In a seminal publica-

tion, Squires et al. (1976) introduced an analysis that allows a clear visualization of those effects.

They constructed a spatial filter to project sensor data in a specific (late) time window onto one

dimension that maximized the difference between globally rare and frequent items. They then used

this same filter to plot the brain response to all possible local patterns of stimuli, thereby revealing

prominent effects of local statistics, such as differences between locally rare/frequent items, and

between locally rare/frequent alternations and repetitions. Here, we extended their analysis: we also

inspected local effects in the repetition- and alternation-biased conditions, while previous studies

(Squires et al., 1976; Kolossa et al., 2012) only had frequency-biased and fully stochastic condi-

tions. We used the group-averaged topographical difference between continuing and violating

streaks as spatial filters in a late time window from 500 to 730 ms (see Figure 3—figure supplement

1 for the exact topographies used) but unlike previous studies, we defined and applied these filters

in a cross-validated manner to avoid circular analysis (Kriegeskorte et al., 2009). Following

Squires et al. (1976), we then plotted the spatially filtered response to all possible local patterns up

to length 3, in the same late time window (from 500 to 730 ms) for all conditions, in the form of a
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Figure 3. Brain responses are modulated by local statistics. The brain response to a given observation is plotted

as a function of the recent history of events. We connected the possible extensions from shorter to longer

patterns, such that the data are represented as a ‘tree’. Each of these trees corresponds to an experimental

condition. At each node of a tree, the circles should be read from left to right and denote the corresponding

patterns; for instance, the pattern AAAB shows the activity level elicited by the item B when it was preceded by

three As. X and Y denote the pooling of both stimuli in conditions in which both stimuli are equiprobable. In the

frequency-biased condition, we report the activity evoked by item B, the most frequent stimulus. Activity levels

across sensors were averaged using a topographical filter within a late time window (from 500 to 730 ms) post-

stimulus onset. The topographical filters were obtained by contrasting rare and frequent patterns (e.g. XYXX –

XYXY in the alternation-biased condition). The filters are shown in Figure 3—figure supplement 1; the small,

circled and colored numbers at the bottom of each tree serve as identifiers. We defined and applied the filters

using a cross-validation approach to ensure statistical independence (see Materials and methods).

DOI: https://doi.org/10.7554/eLife.41541.009

The following figure supplement is available for figure 3:

Figure supplement 1. Responses to the violation of local patterns used as spatial filters.

DOI: https://doi.org/10.7554/eLife.41541.010
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tree whose structure reflects the effect of local statistics on the amplitude of MEG signals (see

Figure 3).

Note that this late time window (from 500 to 730 ms) was selected in order to follow up and

expand the seminal study of Squires et al. (1976) which focused on late (EEG) brain responses.

Here, the exact time window was not optimized to show the clear tree structure seen in Figure 3, or

the strong similarity between observed data and the model reported in Figure 4, but selected a pri-

ori (see Figure 3—figure supplement 1).

This graphical representation summarizes several interesting aspects of the data, of which we pro-

vide a statistical analysis below together with the predictions of our model. First, alternating pairs

(i.e. XY) elicited larger signals than repeating ones (i.e. XX) in all conditions except the alternation-

biased condition, in which this order was reversed. Second, the violation of a repeating streak (i.e.

XXXY) always produced large activity, no matter of the experimental condition. This is particularly

interesting in the alternation-biased condition, since such violations are actually expected in this

case. Last, the continuation of an alternating pattern (i.e. XYXY) produced intermediate activity in

both the fully stochastic and frequency-biased conditions, but low activity in the alternation-biased
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B Empirical and theoretical effects of local statistics
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Figure 4. The local transition probability model accounts for modulations of late MEG signals. Observed MEG

signals and theoretical surprise levels predicted by the transition probability model (with a local integration, ! = 6)

in response to (A) globally rare events and to (B) violation or continuation of local patterns. MEG signals

correspond to activity levels across sensors were averaged using a topographical filter (see Figure 3—figure

supplement 1) within a late time window (from 500 to 730 ms) post-stimulus onset. The patterns reported here

correspond to the diagnostic ones that are highlighted in Figure 3. See Figure 4—figure supplement 1 for

theoretical predictions by other models.

DOI: https://doi.org/10.7554/eLife.41541.011

The following figure supplement is available for figure 4:

Figure supplement 1. Qualitative account of experimental effects by rival models.

DOI: https://doi.org/10.7554/eLife.41541.012
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condition and high activity in the repetition-biased condition. Altogether these results

confirm and extend what has been observed in the past: the effect of local statistic onto brain

responses are modulated by the global frequency of items in the block, but also by the global fre-

quency of alternations.

Comparison of MEG signals with proposed learning models
We now turn to a quantitative analysis of late brain responses (from 500 to 730 ms, as in Figure 3)

with cross-validated topographical filter (see Figure 3—figure supplement 1) and we compare the

most diagnostic effects with the predictions of different learning models. We show that a parsimoni-

ous model, the estimation of local TP (p(A|B) = 1 � p(B|B) and p(B|A) = 1 � p(A|A), TP model) pre-

dicts the effects of local and global statistics observed in brain responses (see Figure 4) and that

those effects are incompatible with two other models (see Figure 4—figure supplement 1), learning

either the local frequency of items (i.e. p(A) = 1 � p(B), IF model) or the local frequency of alterna-

tions between these items (i.e. p(alt.) = 1 � p(rep.), AF model).

We begin with the effects of global, block-level statistics. This analysis supplements findings

reported in Figure 2, but now with cross-validated topographical filters in order to facilitate compar-

ison with the models. Figure 4A shows the late MEG responses evoked by rare and frequent events

in the three biased conditions. First, in the frequency-biased condition, rare items evoke significantly

stronger MEG signals than frequent ones (t17 = 2.57, p = 0.020), similarly to the surprise of the TP

model. Note in Figure 4—figure supplement 1A that the alternative IF model also captures this dif-

ference and that the AF model shows by comparison a weaker effect. Indeed, in the frequency-

biased condition, there exists a weak bias in favor of repetitions, p(rep.) = 5/9, which is smaller than

the frequency bias, p(B) = 2/3.

Second, in the repetition-biased condition, rare alternations evoked stronger signals than fre-

quent repetitions (t17 = 2.97, p = 8.63 � 10–3). Conversely, in the alternation-biased condition, rare

repetitions elicit stronger signals than frequent alternations; however, this difference is expectedly

smaller than in the repetition-biased condition and it was indeed not significant (t17 = 1.33,

p = 0.20). This reversal of repetition/alternation effect in alternation-/repetition-biased conditions is

significant when tested as an interaction in an ANOVA (F1,17 = 17.26, p = 6.64 � 10�4). Such an inter-

action is fully predicted by the TP model (see Figure 4A). Note that the AF model, but not the IF

model, shows such interaction (see Figure 4—figure supplement 1A). To summarize, the TP model

is the only model that predicts the observed effects of global statistics onto MEG responses across

all conditions.

We now turn to the effects of local statistics in short series of stimuli. Figure 4B shows several

effects of the violation or continuation of short patterns of stimuli on MEG responses in the different

conditions. First, we compared MEG responses elicited by the continuation and violation of a repeat-

ing streak. The violation of repeating streaks evoked significantly larger signals than their continua-

tion in the fully-stochastic (t17 = 3.12, p = 6.21 � 10–3) as well as in the frequency-biased condition

(t17 = 2.34, p = 0.032). As expected, they also induced significantly stronger brain signals in the rep-

etition-biased condition (t17 = 3.49, p = 2.79 � 10–3). There was a similar trend in the alternation-

biased condition, but non-significant (t17 = 0.63, p = 0.54) probably because of the conflict between

global and local statistics. The ANOVA did not reveal a significant interaction (F1,17 = 1.60, p = 0.22)

between repetition-/alternation-biased conditions and the continuation/violation of a repeating

streak. These local effects are accounted for by all models (see Figure 4B and Figure 4—figure

supplement 1B).

Second, we compared MEG responses elicited by the continuation and violation of an alternating

streak. The violation and continuation evoked similar brain signals in both the fully-stochastic

(t17 = 0.27, p = 0.79) and the frequency-biased (t17 = 0.47, p = 0.65) conditions. The difference was

not significant in the repetition-biased (t17 = –1.39, p = 0.18) and alternation-biased (t17 = 1.62,

p = 0.13) conditions, but interestingly, it appeared with opposite signs. The ANOVA indeed revealed

a trend regarding the interaction between repetition-/alternation-biased conditions and the continu-

ation/violation of an alternating streak (F1,17 = 3.69, p = 0.07). This local effect of alternations is pre-

dicted by the TP and AF models, but not by the IF model (see Figure 4B and Figure 4—figure

supplement 1B).

Third, we compared MEG responses elicited by the same observations received in different

orders. Since a local integration assigns gradually smaller weights to more remote observations, it

Maheu et al. eLife 2019;8:e41541. DOI: https://doi.org/10.7554/eLife.41541 8 of 24

Research article Neuroscience

https://doi.org/10.7554/eLife.41541


indeed predicts an effect of the order in which observations are received. We compared four local

patterns all composed of 3 Xs and 1 Y but differing in the position of the Y (i.e. first, second, third or

last position). The profile of difference in MEG activity evoked by these different patterns was quali-

tatively similar to what was predicted by the TP model, but not the IF nor the AF ones (see

Figure 4B and Figure 4—figure supplement 1B).

Computational characterization of MEG signals
The previous analyses, like previous studies, focused on the effect of very short patterns (here, up to

3 or 4 observations) and specific brain responses (here, a late component). In principle, however, we

can analyze the effect of any timescale of integration onto brain responses of any given latency. To

extend the results obtained so far, we therefore run a more systematic analysis aiming at characteriz-

ing quantitatively, from an information-theoretic viewpoint, the trial-by-trial fluctuations in MEG

responses recorded at any latency post-stimulus onset (up to 1 s) and any sensor.

To achieve this goal, we performed trial-by-trial regressions for each subject between MEG

responses (separately for each sensor and each time point between –250 ms to 1 s post-sound)

recorded in all conditions and the theoretical surprise levels of various learning models described

above. An example regression is shown in Figure 5A. Note that a similar model-based approach to

brain electrophysiological signals has already been adopted in the past (Strange et al., 2005;

Lieder et al., 2013a; Lieder et al., 2013b; Mars et al., 2008).

The maximum proportion of variance over models and parameter was averaged across sensors

(see Figure 5B and Figure 5—video 1) and it reveals three distinct time windows of interest: an

early one (60 to 130 ms, peak at 70 ms), an intermediate one (160 to 320 ms, peak at 250 ms) and a

late one (460 to 625 ms, peak at 500 ms). The R2 topography in each time window showed peaks

over fronto-temporal sensors (see Figure 5C) as expected for auditory stimuli. This topography was

highly bilateral for the first window, slightly left lateralized for the second one and strongly left later-

alized for the last one. Note that these topographies are similar to the ones obtained in previous

model-free analyses, indicating that the model-based analysis identified similar effects but without

any a priori about their spatial or temporal properties.

We then performed a Bayesian model selection (BMS, see Materials and

methods; Stephan et al., 2009) to identify the learning model that best corresponds to each of the

identified time windows. In the first time window, the model learning IF was deemed the best with

high posterior probability (p(MIF|y) = 0.978) and high confidence (’ = 1); thus, this early response

was best characterized as an adaptation to individual frequent stimuli. By contrast, in the second (p

(MTP|y) = 0.781, ’ = 0.994) and the third (p(MTP|y) = 0.993, ’ = 1) time windows, the observer learn-

ing TP best explained the MEG signals (see Figure 5D). We also performed a hierarchical Bayesian

model selection (Rigoux et al., 2014) over the four different conditions that found high confidence

(’ = 1) that the same models are likely to underlie all conditions, indicating that the results are not

driven by one condition only.

Finally, in order to draw inference about the timescale of integration of each of these three signa-

tures, we performed a Bayesian model averaging (BMA, see Materials and methods). This analyses

optimally combines the different possible models, weighted by their uncertainty in order to obtain

subject-specific posterior distributions over parameter values. The result shows that the later the

MEG time windows, the shorter the timescale of integration (linear fit using the mean of subject-spe-

cific posterior distributions of !: t17 = –3.00, p = 0.008). At the group level (see Figure 5E), the first

window was best characterized by a global integration (! = ¥), the second and third by much more

local integration (! = 13 and 6, respectively, maximum a posteriori values; that is a half-life of 9.01

and 4.16 observations, respectively).

For completeness, Figure 5—figure supplement 1 shows the posterior probability of each model

and timescale of integration in continuous time rather than in specific time windows.

Discussion
In this study, we found a series of brain signals that covary with the online inference of the statistical

properties of auditory sequences of stimuli. Late brain signals qualitatively and quantitatively con-

formed to the inference of transition probabilities, while earlier brain waves denoted a sensitivity to

simpler statistics, such as the item frequency. Furthermore, those different signals were
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Figure 5. Theoretical surprise levels from learning models fitted to MEG signals reveal a multiscale inference

process. Mass-univariate (across sensors and time points) trial-by-trial regressions of MEG signals against

theoretical surprise levels from learning models learning different statistics with different timescale of integration

(!). (A) Example trial-by-trial regression (the colors represent the different conditions), for one subject, at one

particular time point, in one particular sensor in the case of transition probability learning with ! = 16. (B) The

maximum R2 over models and parameters was averaged across sensors, and then across subjects. The resulting

time course reveals three distinct time windows in which regressions yield a high proportion of explained variance.

For reference, the thin grey line represents the global field power evoked by all the sounds (see Figure 1—figure

supplement 2A). (C) Average topography of maximum R2 values in each time window. (D) Bayesian model

comparison reveals that different models best explain MEG signals in these three time windows: item frequency

(IF) in an early time window, and transition probabilities (TP) in later time windows. (E) Bayesian model averaging

further reveals that different timescales of integration are involved: slow, global integration for the early time

window, and increasingly local integration for the later time windows. These posterior distributions give the

probability of ! given the MEG data. The error shading shows the inter-subject s.e.m.

DOI: https://doi.org/10.7554/eLife.41541.013

The following video and figure supplements are available for figure 5:

Figure supplement 1. Time-resolved model comparison.

DOI: https://doi.org/10.7554/eLife.41541.014

Figure supplement 2. Characteristics of the free parameter controlling the timescale of integration.

DOI: https://doi.org/10.7554/eLife.41541.015

Figure 5—video 1. Movie of R2 topographies.

DOI: https://doi.org/10.7554/eLife.41541.016
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characterized by different timescales of integration: late signals were best explained by a very local

timescale that progressively discards past observations, while early signals denoted a much longer

timescale of integration.

Below, we discuss successively both aspects: the types of statistics that might be inferred by the

brain when it is presented with a sequence of observations and the timescales of integration

involved in those inferences. But first, we highlight an important distinction between sequence learn-

ing experiments. Some studies use sequences structured into chunks of stimuli: the sequences are

interrupted by short pauses that define chunks of stimuli, thereby cueing subjects about the type of

regularities to look for and their timescale. Those chunks are often pairs (Todorovic et al., 2011;

Todorovic et al., 2011; Meyer and Olson, 2011; Meyer et al., 2014) or longer patterns,

for example of 5 stimuli (Bekinschtein et al., 2009; Wacongne et al., 2011; Strauss et al., 2015). In

contrast, we used continuous sequences, devoid of chunks of stimuli, very much like in the oddball

literature (Squires et al., 1976; Näätänen et al., 2007). The presence of chunks is crucial for the

processing of sequences in the brain (Dehaene et al., 2015), as exemplified by the strikingly differ-

ent results obtained by Sussman et al. (1998), Sussman and Gumenyuk (2005) and by

Bekinschtein et al. (2009) using similar sequences that were, respectively, either continuous or

structured into chunks with pauses. We will therefore discuss experiments with chunks and continu-

ous sequences separately.

Sensitivity to item frequency
Many previous studies have manipulated the frequency of items within continuous sequences pre-

sented to subjects and reported larger brain responses for rare items compared to frequent ones. In

oddball paradigms for instance, globally rare (deviants) items systematically evoke stronger brain

signals than frequent (standard) ones (Näätänen et al., 2007; Garrido et al., 2009; Garrido et al.,

2013; Hsu et al., 2015; Lecaignard et al., 2015). On top of the effect of the global frequency of

items, the seminal work of Squires et al. (1976) as well as more recent findings (Ulanovsky et al.,

2004; Kolossa et al., 2012) showed that local regularities also modulate brain signals. In particular

Squires et al. (1976) showed that the late P300 response evoked by a particular item was modu-

lated by the preceding history of stimuli: the violations of repeating (XXXY) or alternating (XYXX)

streaks evoked stronger brain signals than their continuation (XXXX and XYXY). The modulatory

effects of local continuation/violation of local patterns were observed even in a fully random

sequence, in which there is no global bias in the frequency of items.

Here, we replicated and extended these findings. First, the MEG responses that we recorded

were strongly modulated by the global frequency of items. Second, despite the limited number of

observations in some cases (e.g. p(AAAB) = (1/3)3 � (2/3) = 2.5% of all patterns of length four in the

frequency-biased condition), we found effects of local patterns both in the fully stochastic (where p

(A) = p(B) = 1/2) and frequency-biased (where p(A) = 1 – p(B) = 1/3) conditions. Furthermore, we

unify the effects of both local and global statistics into the single framework of Bayesian inference

(Meyniel et al., 2016). In that framework the brain is seen as an inference device that seeks to pre-

dict future observations, and recorded brain signals are related to theoretical surprise levels elicited

by the comparison between predictions and actual observations (Friston, 2005). Here, we provide

new data in support of our hypothesis that several brain signals, in particular those characterized by

a late latency, can be best accounted for as surprise signals corresponding to the learning of transi-

tion probabilities.

Sensitivity to alternation frequency
Our hypothesis about an inference of transition probabilities makes an additional important predic-

tion, rarely tested in several previous studies of mismatch responses in continuous sequences.

Indeed, not only item frequency, but also the frequency of alternations is embedded in the space of

transition probabilities. It follows that rare alternations should be more surprising than frequent rep-

etitions and, conversely, that rare repetitions should be more surprising than frequent alternations.

Recent studies manipulated the frequency of alternations while keeping the item frequency fixed

and reported that rare alternations indeed induce stronger brain signals than frequent repetitions

(using continuous sequences: Summerfield et al., 2011; de Gardelle et al., 2013; using pairs:

Summerfield et al., 2008; Grotheer and Kovács, 2014, Grotheer and Kovács, 2015; Tang et al.,
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2018; Feuerriegel et al., 2018). However, in continuous sequence paradigms, the reverse is rarely

observed: rare repetitions often fail to induce stronger brain responses than frequent alternations

(but see in pair learning paradigms: Todorovic and de Lange, 2012; and in pattern learning para-

digms: Strauss et al., 2015). In most cases, there is only a reduced difference (slightly more signal

for frequent alternations than for rare repetitions) rather than a genuine reversal (more signal for

rare repetitions than for frequent alternations).

On the contrary, one important finding of our study, in line with predictive coding (Spra-

tling, 2017; Heilbron and Chait, 2018) and the learning of transition probabilities, is that we

observe a genuine reversal of brain activity evoked by repetitions and alternations depending on

which one is more frequent (by comparing the repetition-biased and alternation-biased conditions).

We also extended those results by demonstrating effects of local statistics on brain signals even

when there is a bias in the frequency of alternations. We report several findings that are predicted

by the transition probability model. For instance, compared to other patterns, the repeating streak

XXXX elicits more signal in the alternation-biased condition than in the repetition-biased condition.

Conversely, the alternating pattern XYXY elicits more signal in the repetition-biased condition than

in the alternation-biased condition. On the contrary, the violated repeating pattern XXXY always elic-

its stronger signal than other patterns, no matter the condition. Those subtle effects in the ordering

of patterns result from the sometimes conflicting effects of local and global regularities, and criti-

cally, they are all predicted by a model according to which the brain attempts to infer transition

probabilities.

A general account in terms of transition probability
Previous studies that manipulated either the frequency of items or the frequency of alternations pro-

vide substantial evidence that the brain is sensitive to both types of statistics. However, they left

unclear whether their results could be attributed, and possibly better explained, by a sensitivity to a

higher-order statistics like the transition probabilities that subsume item and alternation frequencies.

Studies that manipulate those two statistics are actually rare. In some of them, item and alternation

frequencies are not manipulated independently of one another (Wang et al., 2017; Higashi et al.,

2017) and, in some others, systematic analyses are not reported (Tueting et al., 1970); thereby pre-

cluding strong conclusions about the inference of transition probabilities. Here, by manipulating dis-

tinct dimensions of the space of transition probabilities (i.e. item frequency and alternation

frequency) within the same experiment, we were able to demonstrate that mid-latency (~250 ms)

and late (~500 ms) brain responses are sensitive to both item and alternation frequencies in a way

that is best predicted by the inference of transition probabilities. Future studies whose goal will be

to investigate transition probability learning should therefore systematically manipulate both item

and alternation frequencies orthogonally within subjects.

Several computational models relying on predictive coding have been proposed to account for

the effect of global and local item frequency, using (1) information theory (Mars et al., 2008), (2) the

free-energy principle (Lieder et al., 2013a; Lieder et al., 2013b) or (3) constraints on the complexity

of the representation used to generate predictions (Rubin et al., 2016). Our proposed modeling

approach is in line with each of these influential proposals. As in (1), we show a correlation between

brain responses and an information-theoretic measure (Shannon surprise). As in (2) we compute sur-

prise using Bayesian inference. As in (3), we find that brain responses are well explained by the use

of very recent observations to predict the upcoming one, and an attempt to summarize this recent

history into a simple representation (here, we used transition probabilities between successive item,

but we did not explore more complex possibilities).

Previous modeling studies often focused on a single brainwave, either the mismatch negativity

(Lieder et al., 2013a; Lieder et al., 2013b) or the P300 component (Squires et al., 1976;

Mars et al., 2008; Kolossa et al., 2012). Here, however, we conducted a systematic search across

all post-stimulus latencies and sensors in order to identify brain responses that are modulated by var-

ious statistical properties of the input sequence. Using a similar approach, recent studies also

showed that different computational aspects of learning could be mapped onto different electro-

physiological signals (Sedley et al., 2016; Diaconescu et al., 2017). Here, this systematic approach

combined with qualitative and quantitative model comparison (Forstmann and Wagenmakers,

2015; Palminteri et al., 2017) allowed the identification of a succession of computational processes

in the brain. Early responses were best explained by the learning of the frequency of items over a
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long timescale, while late responses were best explained by the learning of transition probabilities

over an increasingly shorter timescale.

Characterising timescales of integration
We modeled these timescales of integration using ‘leaky’ integrators, which have been shown to be

biologically plausible and are therefore widely used in the modeling of many brain functions

(Rescorla and Wagner, 1972; Glaze et al., 2015; Farashahi et al., 2017). We should, however,

acknowledge a limitation of the present study: since we did not vary the timing between stimuli

(unlike, for instance, Pegado et al., 2010), the timescale of integration here confounds elapsed time

and the number of items, which cannot be separated by our experimental design.

We found that both long-term and short-term sequence learning mechanisms coexist in the brain,

at different moments in the course of stimulus processing, with the timescale of integration decreas-

ing progressively with response latency. Thus, previous studies that focused only on short-term

(Huettel et al., 2002) or longer term (Näätänen et al., 2007) regularities may have missed some

brain responses related to sequence learning. Our finding is, however, much in line with other stud-

ies suggesting that the brain may entertain several statistical estimates computed over different

timescales (Ulanovsky et al., 2004; Kiebel et al., 2008; Bernacchia et al., 2011; Ossmy et al.,

2013; Meder et al., 2017; Scott et al., 2017; Runyan et al., 2017). These multiple estimates might

have an important computational role in the sense that they would allow the brain to detect regulari-

ties occurring at many different timescales while keeping the computations fairly easy and tractable,

that is without relying on hierarchical Bayesian inference (Collins and Koechlin, 2012; Wilson et al.,

2013).

Altogether, the different types of statistics that are learnt and the different timescales of integra-

tion that we identified in this study suggest an interesting dissociation, which has already been put

forward in the past (May and Tiitinen, 2010; Todorovic and de Lange, 2012; Strauss et al., 2015;

Collins and Frank, 2018), regarding the neural mechanisms at stake: early responses would reflect a

habituation mechanism while later responses would be best explained by a predictive coding mecha-

nism. In the first case, stronger signals to rare events come from the fact that neurons tuned to prop-

erties of rare items gets less habituated (i.e. they fatigue less) than those tuned to properties of the

frequent items. In the second case, stronger signals evoked by rare events follow from violated

expectations. In line with this dichotomy, we found that early responses are better explained by sen-

sitivity to item frequency only, computed over a long history of stimuli. This has two consequences:

first, only rare items (not rare repetitions or alternations) evoke strong signals at these latencies; sec-

ond, this occurs at a very long timescale. Both aspects have been hypothesized as being corner-

stones of habituation processes (Kandel and Tauc, 1965). On the other hand, mid-latency and late

responses reflect a sensitivity to transition probabilities, computed over a much less protracted his-

tory. This translates into the fact that not only rare items but also rare transitions (be them alterna-

tions or repetitions) evoke stronger signals at these latencies. The simple fact that pairs of items,

whose item frequency is matched, modulate brain signals at those latencies preclude an interpreta-

tion based on habituation mechanisms and are therefore only compatible with predictive coding

(Wacongne et al., 2012).

Multiple processings: from transition probabilities to chunks and
patterns
Our findings also support the existence of multiple computational systems for sequence learning

(Dehaene et al., 2015). The mid-latency response, with an integration characterized by a half-life

of ~9 items, is compatible with a neuro-computational model of predictive coding, according to

which the brain uses a window over the recent past in order to predict the transition probability

from the current to the next item (Wacongne et al., 2012). The late response, on the other hand, is

compatible with a conscious search for patterns (Bekinschtein et al., 2009; Dehaene et al., 2015;

Wang et al., 2015) as shown by its extreme sensitivity to very recent observations (a half-life of ~4

items). The sensitivity to local transition probabilities identified here may be a mere consequence of

this search for local patterns. We are indeed not claiming that the late brain signals we measured

reflect solely transition probability learning. In fact, several studies have shown that late brain

responses like the P300 reflect complex sequential dependencies (Donchin and Coles, 1988) such
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as short melodic patterns (Bekinschtein et al., 2009; Wacongne et al., 2011; Strauss et al., 2015)

and their abstract numerical and grammatical organization (Wang et al., 2015). Local transition

probability learning, as modeled here, is probably just a minimal statistical approximation of what

the brain systems generating those responses genuinely estimate.

One of such studies, the so-called ‘local-global’ paradigm (Bekinschtein et al., 2009;

Wacongne et al., 2011), argues in favor of such a dissociation between brain systems characterized

by an early latency which learn very simple sequential properties (like the item frequency or alterna-

tion frequency), and brain systems characterized by a late latency that track more complex sequen-

tial dependencies involving patterns of stimuli. In this paradigm, sequences are structured into

chunks of five tones separated by a pause. Each chunk is a pattern which can be a series of repeated

items (XXXXX) or a series of four repeated items followed by a deviant (XXXXY). In a modified ver-

sion (Strauss et al., 2015), those patterns could also be a series of alternation (XYXYX) and a series

followed by a deviant (XYXYY). In different experimental conditions, either pattern can itself be pre-

sented frequently (80% of patterns), thereby making the other pattern a rare deviant (20% of pat-

terns). This experimental design thus manipulates independently within-chunk deviance (e.g. XXXXY

and XYXYY) and between-chunk deviance (rare pattern). In this paradigm, early and mid-latency

responses (the mismatch negativity, occuring at ~250 ms) were found sensitive to the item frequency

(original version) and the alternation frequency (modified version): there is increased activity for the

last item (Y) in both the XXXXY pattern and the XYXYY pattern. This first finding is fully compatible

with the present observations and the hypothesis of a brain system learning transition probabilities

because item frequency and alternation frequency are embedded in the space of transition probabil-

ities. Furthermore, this increased activity for the last item (Y) is actually larger when the XXXXX pat-

tern is more frequent (thus inducing a very low global frequency of Ys) compared to when the

XXXXY pattern is more frequent (inducing a larger global frequency of Ys), suggesting that the cor-

responding timescale of integration is longer than five elements, compatible with the one we found

in the present study for mid-latency responses (a half-life of ~9 items for the component occurring

at ~250 ms).

A second finding from the ‘local-global’ paradigm is that late brain responses (the P300) are sen-

sitive to the rarity of patterns over the entire block. While this could seem to contradict our present

result that late brain responses are characterized by a very short timescale (a half-life of ~4 items for

the component occurring at ~500 ms), they can be reconciled if one keeps in mind the critical differ-

ence between continuous sequences (the present study) and sequences structured into chunks (like

the ‘local-global’ paradigm). With this distinction in mind, our current results and previous ones

indeed support altogether the same hypothesis: late brain responses correspond to a brain system

that operates over different levels of abstraction and within the space of working memory. This sys-

tem would first process the (4 or 5) recent items and search for regularities among them. This system

would then abstract those regularities in the form of a pattern, especially when the sequence is

already segmented into chunks, such as ‘the current pattern is made of alternating notes’, or ‘the

current pattern comprises four identical notes followed by a different one’. Those patterns would

serve as a new unit of processing: the brain would keep track of the patterns recently encountered

and be surprised when an observation violates the pattern that recently prevailed. Such characteris-

tics are typical of a rule-based search in conscious working memory, thus limited to a small number

of elements (Baddeley, 1992). If this hypothesis is true, we can speculate that late brain responses

observed here in the context of our prediction task will not be observed if participants are not

attending to the sequence of stimuli. Those late brain waves are typically not observed in patients

with impaired consciousness (Faugeras et al., 2012), during sleep (Strauss et al., 2015), or if the

subject in not attending (Bekinschtein et al., 2009; Chennu et al., 2013). We used a prediction task

here to maximize our chance of evoking late responses, and to be able to compare them with previ-

ous reports (Squires et al., 1976). On the contrary, earlier brain waves may arise from brain pro-

cesses that automatically extract environmental statistics independently of task-relevance

(Bekinschtein et al., 2009; Wacongne et al., 2011; Strauss et al., 2015). Testing the automaticity

and task-dependence of our results will require further experiments.

Finally, while the present modeling effort was limited to the modeling of transition probability

learning, it is likely that such learning constitutes only a building block on top of which higher-order

representations are built, including the hierarchical structures that are thought to underpin language

processing (Saffran et al., 1996; Dehaene et al., 2015; Leonard et al., 2015). Future studies will be
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needed to better understand whether and how lower-order properties like transition probabilities

can serve as a scaffold for more complex representation. A practical implication of our results is that

such future studies should carefully control for possible biases in transition probabilities, otherwise

effects attributed to higher-order representation could actually be driven by simple statistical biases.

Materials and methods

Subjects
Twenty participants (11 females), aged between 18 and 25 (mean 21.24, s.e.m.: 0.44) were recruited

for this study. The study was approved by the local ethics committee (CPP 08–021 Ile-de-France VII),

and participants gave their informed written consent before participating. Data from two subjects

was discarded because of excessive head motion.

Stimuli
Auditory and visual stimulation was delivered via Psychtoolbox (Brainard, 1997) running on MATLAB

(Mathworks). The experiment was split into four different conditions. In each of these conditions,

two different sounds were presented. These sounds were French syllables and were reported as

being perceived without ambiguity by the subjects. The pair of syllables was changed at the begin-

ning of each block: /ka/ and /pi/ in the first run, /ky/ and /te/ in the second one, /ku/ and /te~/ in the

third one, and /pø/ and /to/ in the fourth one. Each syllable was pseudo-randomly labelled as A or B

and lasted about 200 milliseconds, with a SOA between 2 syllables of 1.4 s (see Figure 1A). A fixa-

tion dot was displayed at the center of the screen while syllables were presented. To ensure sub-

jects’ attentional focus on the auditory stimulation, they were occasionally asked (every 12 to 18

sounds) to report an explicit discrete prediction (i.e. A or B) about the forthcoming stimulus using

one of two buttons. Each block presented 400 to 409 stimuli and lasted for about 10 min. Subjects

were allowed to rest in between.

Experimental design
The four different conditions were characterized by different first-order transition probabilities (see

Figure 1B): a condition with a frequency bias (i.e. p(A|B) = 1/3 and p(B|A) = 2/3 which led to p

(A) = 1/3 and p(alt.) = 4/9), a condition with a repetition bias (i.e. p(A|B) = p(B|A) = 1/3 which led to

p(A) = 1/2 and p(alt.) = 1/3), a condition with an alternation bias (i.e. p(A|B) = p(B|A) = 2/3 which led

to p(A) = 1/2 and p(alt.) = 2/3) and a fully stochastic condition devoted of any bias (i.e. p(A|B) = p(B|

A) = 1/2 which led to p(A) = 1/2 and p(alt.) = 1/2). The order of conditions was pseudo-randomized

across subjects.

Data acquisition
Subjects’ brain activity was recorded using a 306 channels (102 triplets of sensors each composed of

1 magnetometer and two orthogonal planar gradiometers) whole-head Elekta Neuromag MEG sys-

tem with an acquisition sampling rate of 1 kHz and hardware bandpass filtering between 0.1 and

330 Hz. Prior to installing the subjects in the MEG room, we digitized three head landmarks (nasion

and pre-auricular points), four head position indicator (HPI) coils placed over frontal and mastoı̈dian

skull areas, as well as about 60 additional locations over subjects’ skull using a three-dimensional

Fastrak system (Polhemus). Thanks to HPI landmarks, head position within the MEG helmet was mea-

sured at the beginning of each run. Electrocardiogram, vertical and horizontal oculogram were

recorded in order to monitor heart rate and eye movements during the experiment.

Pre-processing
Raw MEG signals were first corrected for between-session head movements and bad channels using

MaxFilter (Elekta). Following pre-processing steps were performed using Fieldtrip in

MATLAB (Mathworks). First, MEG data was epoched between �250 ms to 1 s with respect to sound

onset. Power line artefacts were then removed by filtering out the 50 Hz frequency and its 100 and

150 Hz harmonics. Trials exhibiting muscle and/or other movements’ artefacts and/or SQUIDs’ jumps

that were detected based on semi-automatic methods (using the variance of MEG signals over sen-

sors and the first order derivative of MEG signals over time) were then completely removed from the
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dataset. MEG signals were then low-pass filtered below 30 Hz and downsampled to 250 Hz. An ICA

was then performed and components exhibiting topographical and time courses signatures of eye

blinks or cardiac artefacts were subsequently removed from the data. The remaining trials were

eventually monitored visually and individually to ensure that all bad trials were removed from the

subject’s dataset. Last, data were baseline-corrected by removing trial-wise averaged activity in the

250 ms time window preceding sound onset. Throughout the paper results are reported only for

magnetometers.

Sources localizations
Anatomical T1-weighted MRIs (with 1 � 1 � 1.1 mm voxel size) were acquired for each subject using

a 3T Tim Trio (Siemens) MRI scanner. For each subject, grey matter was first segmented from white

matter using FreeSurfer (Fischl et al., 1999). Segmented tissues were then imported into BrainStorm

(Tadel et al., 2011) in order to reconstruct subjects’ head and cortical surfaces using a cortical mesh

composed of 150,002 vertices. Models of the cortex and the head were used to estimate the cur-

rent-source density distribution over the cortical surface. To do so, subject-specific noise covariance

matrices were estimated in each condition on the baseline from the 250 ms time window preceding

sound onset. Individual sources were computed using weighted minimum-norm estimates (depth

weighting factor: 0.8, losing factor for dipole orientation: 0.2), separately for each condition, and the

norm of each tridimensional vector obtained was finally computed for each vertex. The resulting

sources were projected on a standard anatomical template and averaged across subjects. The group

average was finally interpolated to a higher resolution brain template composed of 306716 vertices

that was inflated to 35% to ensure high-quality figures (see Figure 1—figure supplement 2B).

Statistical analyses
We searched for differences between rare and frequent observations within each experimental con-

dition. To correct for multiple comparison over sensors and time points, we used spatiotemporal

clusters and non-parametric paired t-tests estimated from 1000 permutations (Maris and Oosten-

veld, 2007). A cluster was defined by adjacent time points and neighbouring sensors (neighbours

sensors are less than 15 cm apart; there is an average of 8.3 neighbours per sensor). The cluster-level

statistic was the sum of the sample-specific t-statistics that belong to a given cluster. The alpha level

of the sample-specific test statistic was 0.05 and the alpha level of the cluster-specific test statistic

was 0.05.

Topographical filtering
Group averaged topographical ‘surprise’ responses (see Figure 3—figure supplement 1) were com-

puted by contrasting, in a late time window (from 500 to 730 ms), MEG signals evoked by local

streaks that were violated (e.g. XXXY), both given local (e.g. a local series of repetitions) and global

(e.g. alternations are globally less frequent than alternations in the alternation-biased condition) sta-

tistics, against the same streaks that were continued (e.g. XXXX). Those group-level topographies

were then used to filter, at the subject level, MEG signals obtained in the same time window and the

same sequence, but evoked by all the possible patterns up to length 4 (see Figure 3). Importantly,

we used a cross-validation approach to ensure statistical validity and preclude double dipping

(Kriegeskorte et al., 2009). More precisely, topographical filters were estimated at the group level

on odd trials and applied at the subject level on even trials. We also did it the other way around and

pooled both together. In order to facilitate visual comparison, in each condition, the averaged activ-

ity was subtracted from the activity evoked by each pattern (see Figure 4).

Bayesian models of the learning process
We designed ‘ideal observers’ that infer the hidden value of a statistic � of stimuli given a particular

sequence u of binary observations. For the sake of simplicity, we first consider here the learning of IF

(MIF). This ideal observer infers the frequency of As (�A), and updates it following each observation,

in an optimal manner following Bayes’ rule.

p �Aju1:k
� �

¼
p u1:kj�A
� �

� p �A
� �

p u1:kð Þ
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Because observations are binary and our prior about �A is uniform, the posterior distribution fol-

lows a Beta distribution (Gelman et al., 2013).

p �Aju1:k
� �

/Beta NA
k þ 1;NB

k þ 1
� �

The mean of this distribution, which is also the predictive likelihood that the next observation will

be an A, can be expressed analytically as follows.

E �Ak
� �

¼
NA
k þ 1

NA
k þNB

k þ 2
¼ p ukþ1 ¼Aju1:k;MIF

� �

Where NA and NB denote the number of A and B items that have been observed up to the k-th

observation of the sequence.

Following Shannon (1948), the theoretical surprise levels can then be computed as the predictive

likelihood of the observation that is actually received.

Ikþ1 ¼
� log2 E �Ak

� �� �

if ukþ1 ¼A

� log2 1�E �Ak
� �� �

if ukþ1 ¼B

�

Because integration over long periods of time and a large number of observations is often com-

promised by memory constraints, we designed models with different timescales of integration. In

those models, the weight of a given observation decays exponentially with the number of observa-

tions. The count of observations NA and NB is therefore ‘leaky’. For mathematical convenience, let

us assume that the sequence of observation u1:n is coded numerically as 0 s and 1 s representing

respectively Bs and As. In that case, the leaky count of the occurrences of item A is:

NA
! ¼

X

n

k¼1

un�k � exp
�k

!

� �

Where ! is a free parameter that characterizes the strength of the leak and therefore controls the

timescale of integration (see Figure 5—figure supplement 2): smaller values of ! correspond to a

more local integration that favours more recent observations. When ! = ¥, the integration becomes

perfect, that is devoid of any forgetting, and thus provides an optimal estimate of the true genera-

tive statistics that are fixed within each condition of our experiment. Importantly, the timescale of

integration determines the stability of beliefs, and therefore influences the dynamics of surprise lev-

els (see Figure 2—figure supplement 1B for an example): the smaller the !, the more local the inte-

gration and the more erratic the surprise levels.

Now that we have presented the derivation for the ideal observer learning the frequency of items

IF, we can extend it to other types of observers that learn AF or TP. The derivation for the AF model

is most similar to the IF model: while the IF model counts, with a leak, the occurrence of As (and Bs),

the AF model counts, with a leak, the occurrence of alternations (and repetitions). For the AF model,

one therefore simply needs to recode the input sequence into repetitions and alternations (rather

than As and Bs) and apply the exact same logic as for the IF model. The derivation of the TP model

is slightly different, since it requires to estimate two statistics (instead of one, in IF and AF): two tran-

sition probabilities, one for the probability of observing an A after a B �A|B = 1 – �B|B and one for the

probability of observing a B after an A, �B|A = 1 – �A|A. Note that �B|B and �A|A can be deduced from

�A|B and �B|A, such that two probabilities suffice to describe all transitions. Each TP is estimated

essentially like the frequency of items, but by counting transitions. The estimation of �A|B and �B|A

therefore requires to entertain (leaky) counts corresponding to all possible transitions (AA, AB, BA,

BB). More details are provided in Meyniel et al. (2016) and the MATLAB code for all ideal observers

is available (Meyniel and Maheu, 2018; copy archived at https://github.com/elifesciences-publica-

tions/MinimalTransitionProbsModel).

It is important to notice that IF and AF can be analytically derived from TP:

�A ¼
�AjB

�AjBþ �BjA
and�alt: ¼ 2 �

�AjB � �BjA

�AjB þ �BjA

Thus, IF and AF are subsumed in the space of TP (see Figure 1A).
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Trial-by-trial regressions
Following previous work (Mars et al., 2008), we hypothesize that, for each trial k, brain signals yk lin-

early scale with the theoretical level of surprise Ik. Here, different ideal observer models M learning a

different statistics i with a difference timescale of integration ! have different surprise levels. We

thus estimated regression coefficients b from the following linear regression model (see Figure 5).

yk ¼ bb
0
þb1 � Ik Mi;!ð Þþ �with �~N 0;s2

�

� �

We estimated regressions for each subject, at each time point around sound onset and each

MEG sensor. We also varied, in separate regressions, the ideal observer model (IF, AF, TP) and the

timescale of integration !. We tested 55 values of ! (see Figure 5E for the exact grid used) so as to

cover the entire number of observations in the sequence (including the case of a perfect integration:

! = ¥) while minimizing correlations between surprise levels obtained with different values of !.

Bayesian model comparison
In order to compare models, we adopted a Bayesian approach. We approximated the marginal like-

lihood (or model evidence) of each model, a key metric for model comparison, using the Bayesian

information criterion (BIC; Schwarz, 1978). Under independent and identically distributed model

errors, the BIC can be expressed as follows.

BIC¼ n � log ŝ2

� þ k � logn

ŝ2

� ¼min
1

n
�
X

n

k�1

yk � ŷk;!
� �2

where n is the number of observations, k the number parameters: that is here 4 b0s (one per condi-

tion), b1 and !. Note that all models here have the same number of free parameters. Therefore,

other approximations for the model evidence such as the Akaike Information Criterion

(Akaike, 1998), or simply the proportion of explained variance, would lead to the same conclusions.

We then used model evidence to compare models with a random-effect approach. An alternative

is to use a fixed-effect approach, by summing log-ratios of model evidence (i.e. Bayes Factors). How-

ever, such an approach is valid only for pairs of models and its results can easily be driven by outlier

subjects. We performed the random-effect analysis described in Stephan et al. (2009);

Rigoux et al. (2014) and implemented in the VBA toolbox (Daunizeau et al., 2014). This analysis

returns several key estimates for each model included in the comparison set: the expected model

frequency in the general population as well as the probability for each model to be more frequent

than any other model in the general population (the ‘exceedance probability’, noted ’).

Bayesian model averaging
In addition to identifying the model that best explain the MEG signals, one can also draw inference

about the best integration parameter !. To do so, the BIC approximation of the model evidence is

estimated for each value of the timescale integration parameter !.

pðyjM; !Þ»exp
�BICð!Þ

2

� �

Note that the equation above depends on the use of a particular model. Since we do not know

for sure which model is used by the brain, we can combine all models following probability calculus

in order to infer the value of ! that best explain the MEG signals. Under a uniform prior over M and

!, it boils down to:

pð!jyÞ /
X

i

p yjMi;!ð Þ

Note that those equations apply to one subject, such that we obtain an estimate of ! per subject.
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mique et aux Énergies Alter-
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Teinonen T, Fellman V, Näätänen R, Alku P, Huotilainen M. 2009. Statistical language learning in neonates
revealed by event-related brain potentials. BMC Neuroscience 10:21. DOI: https://doi.org/10.1186/1471-2202-
10-21

Todorovic A, van Ede F, Maris E, de Lange FP. 2011. Prior expectation mediates neural adaptation to repeated
sounds in the auditory cortex: an MEG study. Journal of Neuroscience 31:9118–9123. DOI: https://doi.org/10.
1523/JNEUROSCI.1425-11.2011, PMID: 21697363

Todorovic A, de Lange FP. 2012. Repetition suppression and expectation suppression are dissociable in time in
early auditory evoked fields. Journal of Neuroscience 32:13389–13395. DOI: https://doi.org/10.1523/
JNEUROSCI.2227-12.2012, PMID: 23015429

Maheu et al. eLife 2019;8:e41541. DOI: https://doi.org/10.7554/eLife.41541 23 of 24

Research article Neuroscience

https://doi.org/10.1016/j.neuroimage.2013.08.065
http://www.ncbi.nlm.nih.gov/pubmed/24018303
https://doi.org/10.1371/journal.pcbi.1005058
http://www.ncbi.nlm.nih.gov/pubmed/27490251
https://doi.org/10.1038/nature23020
http://www.ncbi.nlm.nih.gov/pubmed/28723889
https://doi.org/10.1126/science.274.5294.1926
http://www.ncbi.nlm.nih.gov/pubmed/8943209
https://doi.org/10.1016/j.tics.2017.10.003
http://www.ncbi.nlm.nih.gov/pubmed/29150414
https://doi.org/10.1214/aos/1176344136
https://doi.org/10.1214/aos/1176344136
https://doi.org/10.1016/j.neuron.2017.06.013
https://doi.org/10.1016/j.neuron.2017.06.013
http://www.ncbi.nlm.nih.gov/pubmed/28669543
https://doi.org/10.7554/eLife.11476
http://www.ncbi.nlm.nih.gov/pubmed/26949254
https://doi.org/10.1002/j.1538-7305.1948.tb00917.x
https://doi.org/10.1016/j.bandc.2015.11.003
https://doi.org/10.1016/j.bandc.2015.11.003
http://www.ncbi.nlm.nih.gov/pubmed/26809759
https://doi.org/10.1126/science.959831
http://www.ncbi.nlm.nih.gov/pubmed/959831
https://doi.org/10.1016/j.neuroimage.2009.03.025
http://www.ncbi.nlm.nih.gov/pubmed/19306932
https://doi.org/10.1016/j.neunet.2004.12.004
https://doi.org/10.1016/j.neunet.2004.12.004
https://doi.org/10.1073/pnas.1501026112
https://doi.org/10.1073/pnas.1501026112
http://www.ncbi.nlm.nih.gov/pubmed/25737555
https://doi.org/10.1038/nn.2163
http://www.ncbi.nlm.nih.gov/pubmed/19160497
https://doi.org/10.3389/fnhum.2011.00067
https://doi.org/10.3389/fnhum.2011.00067
http://www.ncbi.nlm.nih.gov/pubmed/21847378
https://doi.org/10.1038/nrn3838
http://www.ncbi.nlm.nih.gov/pubmed/25315388
http://www.ncbi.nlm.nih.gov/pubmed/25315388
https://doi.org/10.1097/00001756-199812210-00031
http://www.ncbi.nlm.nih.gov/pubmed/9926868
https://doi.org/10.1097/01.wnr.0000177002.35193.4c
http://www.ncbi.nlm.nih.gov/pubmed/16110282
https://doi.org/10.1155/2011/879716
https://doi.org/10.1155/2011/879716
https://doi.org/10.1111/j.1439-0310.2010.01772.x
https://doi.org/10.1111/j.1439-0310.2010.01772.x
https://doi.org/10.7554/eLife.33123
https://doi.org/10.7554/eLife.33123
http://www.ncbi.nlm.nih.gov/pubmed/30547881
https://doi.org/10.1186/1471-2202-10-21
https://doi.org/10.1186/1471-2202-10-21
https://doi.org/10.1523/JNEUROSCI.1425-11.2011
https://doi.org/10.1523/JNEUROSCI.1425-11.2011
http://www.ncbi.nlm.nih.gov/pubmed/21697363
https://doi.org/10.1523/JNEUROSCI.2227-12.2012
https://doi.org/10.1523/JNEUROSCI.2227-12.2012
http://www.ncbi.nlm.nih.gov/pubmed/23015429
https://doi.org/10.7554/eLife.41541


Tueting P, Sutton S, Zubin J. 1970. Quantitative evoked potential correlates of the probability of events.
Psychophysiology 7:385–394. DOI: https://doi.org/10.1111/j.1469-8986.1970.tb01763.x, PMID: 5510812

Ulanovsky N, Las L, Farkas D, Nelken I. 2004. Multiple time scales of adaptation in auditory cortex neurons.
Journal of Neuroscience 24:10440–10453. DOI: https://doi.org/10.1523/JNEUROSCI.1905-04.2004,
PMID: 15548659

Wacongne C, Labyt E, van Wassenhove V, Bekinschtein T, Naccache L, Dehaene S. 2011. Evidence for a
hierarchy of predictions and prediction errors in human cortex. PNAS 108:20754–20759. DOI: https://doi.org/
10.1073/pnas.1117807108, PMID: 22147913

Wacongne C, Changeux JP, Dehaene S. 2012. A neuronal model of predictive coding accounting for the
mismatch negativity. Journal of Neuroscience 32:3665–3678. DOI: https://doi.org/10.1523/JNEUROSCI.5003-
11.2012, PMID: 22423089

Wang L, Uhrig L, Jarraya B, Dehaene S. 2015. Representation of numerical and sequential patterns in macaque
and human brains. Current Biology 25:1966–1974. DOI: https://doi.org/10.1016/j.cub.2015.06.035,
PMID: 26212883

Wang R, Shen Y, Tino P, Welchman AE, Kourtzi Z. 2017. Learning predictive statistics: strategies and brain
mechanisms. The Journal of Neuroscience 37:8412–8427. DOI: https://doi.org/10.1523/JNEUROSCI.0144-17.
2017, PMID: 28760866

Wilson RC, Nassar MR, Gold JI. 2013. A mixture of delta-rules approximation to bayesian inference in change-
point problems. PLOS Computational Biology 9:e1003150. DOI: https://doi.org/10.1371/journal.pcbi.1003150,
PMID: 23935472

Yaron A, Hershenhoren I, Nelken I. 2012. Sensitivity to complex statistical regularities in rat auditory cortex.
Neuron 76:603–615. DOI: https://doi.org/10.1016/j.neuron.2012.08.025

Maheu et al. eLife 2019;8:e41541. DOI: https://doi.org/10.7554/eLife.41541 24 of 24

Research article Neuroscience

https://doi.org/10.1111/j.1469-8986.1970.tb01763.x
http://www.ncbi.nlm.nih.gov/pubmed/5510812
https://doi.org/10.1523/JNEUROSCI.1905-04.2004
http://www.ncbi.nlm.nih.gov/pubmed/15548659
https://doi.org/10.1073/pnas.1117807108
https://doi.org/10.1073/pnas.1117807108
http://www.ncbi.nlm.nih.gov/pubmed/22147913
https://doi.org/10.1523/JNEUROSCI.5003-11.2012
https://doi.org/10.1523/JNEUROSCI.5003-11.2012
http://www.ncbi.nlm.nih.gov/pubmed/22423089
https://doi.org/10.1016/j.cub.2015.06.035
http://www.ncbi.nlm.nih.gov/pubmed/26212883
https://doi.org/10.1523/JNEUROSCI.0144-17.2017
https://doi.org/10.1523/JNEUROSCI.0144-17.2017
http://www.ncbi.nlm.nih.gov/pubmed/28760866
https://doi.org/10.1371/journal.pcbi.1003150
http://www.ncbi.nlm.nih.gov/pubmed/23935472
https://doi.org/10.1016/j.neuron.2012.08.025
https://doi.org/10.7554/eLife.41541

